Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
mBio ; 15(5): e0321123, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564693

RESUMO

Most arthropod-borne viruses produce intermittent epidemics in infected plants. However, the underlying mechanisms of these epidemics are unclear. Here, we demonstrated that rice stripe mosaic virus (RSMV), a viral pathogen, significantly increases the mortality of its overwintering vector, the leafhopper species Recilia dorsalis. Cold-stress assays indicated that RSMV reduces the cold tolerance of leafhoppers, a process associated with the downregulation of leafhopper cuticular protein genes. An RSMV-derived small RNA (vsiR-t00355379) was found to facilitate the downregulation of a leafhopper endocuticle gene that is mainly expressed in the abdomen (named RdABD-5) and is conserved across dipteran species. The downregulation of RdABD-5 expression in R. dorsalis resulted in fewer and thinner endocuticle lamellae, leading to decreased cold tolerance. This effect was correlated with a reduced incidence rate of RSMV in early-planted rice plants. These findings contribute to our understanding of the mechanism by which viral pathogens reduce cold tolerance in arthropod vectors and suggest an approach to managing the fluctuating prevalence of arboviruses. IMPORTANCE: Increasing arthropod vector dispersal rates have increased the susceptibility of crop to epidemic viral diseases. However, the incidence of some viral diseases fluctuates annually. In this study, we demonstrated that a rice virus reduces the cold tolerance of its leafhopper vector, Recilia dorsalis. This effect is linked to the virus-derived small RNA-mediated downregulation of a gene encoding a leafhopper abdominal endocuticle protein. Consequently, the altered structural composition of the abdominal endocuticle reduces the overwinter survival of leafhoppers, resulting in a lower incidence of RSMV infection in early-planted rice plants. Our findings illustrate the important roles of RNA interference in virus-vector insect-environment interactions and help explain the annual fluctuations of viral disease epidemics in rice fields.


Assuntos
Temperatura Baixa , Hemípteros , Oryza , Doenças das Plantas , Animais , Hemípteros/virologia , Doenças das Plantas/virologia , Oryza/virologia , Tenuivirus/genética , Tenuivirus/fisiologia , Insetos Vetores/virologia , Insetos Vetores/fisiologia
2.
Mol Plant Pathol ; 25(3): e13446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38502176

RESUMO

Animal studies have shown that virus infection causes changes in host chromatin accessibility, but little is known about changes in chromatin accessibility of plants infected by viruses and its potential impact. Here, rice infected by rice stripe virus (RSV) was used to investigate virus-induced changes in chromatin accessibility. Our analysis identified a total of 6462 open- and 3587 closed-differentially accessible chromatin regions (DACRs) in rice under RSV infection by ATAC-seq. Additionally, by integrating ATAC-seq and RNA-seq, 349 up-regulated genes in open-DACRs and 126 down-regulated genes in closed-DACRs were identified, of which 34 transcription factors (TFs) were further identified by search of upstream motifs. Transcription levels of eight of these TFs were validated by reverse transcription-PCR. Importantly, four of these TFs (OsWRKY77, OsWRKY28, OsZFP12 and OsERF91) interacted with RSV proteins and are therefore predicted to play important roles in RSV infection. This is the first application of ATAC-seq and RNA-seq techniques to analyse changes in rice chromatin accessibility caused by RSV infection. Integrating ATAC-seq and RNA-seq provides a new approach to select candidate TFs in response to virus infection.


Assuntos
Oryza , Infecções por Vírus Respiratório Sincicial , Tenuivirus , Animais , Fatores de Transcrição/genética , Oryza/genética , Tenuivirus/genética , Sequenciamento de Cromatina por Imunoprecipitação , RNA-Seq , Cromatina , Análise de Dados
3.
PLoS Pathog ; 20(3): e1012112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507423

RESUMO

Viruses are encapsidated mobile genetic elements that rely on host cells for replication. Several cytoplasmic RNA viruses synthesize proteins and/or RNAs that translocate to infected cell nuclei. However, the underlying mechanisms and role(s) of cytoplasmic-nuclear trafficking are unclear. We demonstrate that infection of small brown planthoppers with rice stripe virus (RSV), a negarnaviricot RNA virus, results in K63-linked polyubiquitylation of RSV's nonstructural protein 3 (NS3) at residue K127 by the RING ubiquitin ligase (E3) LsRING. In turn, ubiquitylation leads to NS3 trafficking from the cytoplasm to the nucleus, where NS3 regulates primary miRNA pri-miR-92 processing through manipulation of the microprocessor complex, resulting in accumulation of upregulated miRNA lst-miR-92. We show that lst-miR-92 regulates the expression of fibrillin 2, an extracellular matrix protein, thereby increasing RSV loads. Our results highlight the manipulation of intranuclear, cytoplasmic, and extracellular components by an RNA virus to promote its own replication in an insect vector.


Assuntos
Hemípteros , MicroRNAs , Oryza , Tenuivirus , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Tenuivirus/metabolismo , Regulação para Cima , Fibrilina-2/genética , Fibrilina-2/metabolismo , Replicação Viral , Oryza/genética , Doenças das Plantas
4.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536757

RESUMO

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Assuntos
Arbovírus , Hemípteros , Oryza , Tenuivirus , Animais , Arbovírus/genética , Hemípteros/fisiologia , Tenuivirus/fisiologia , Insetos Vetores , Antivirais/metabolismo , Oryza/genética , Doenças das Plantas
5.
Plant Physiol ; 195(1): 850-864, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330080

RESUMO

Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.


Assuntos
Oryza , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Reoviridae , Tenuivirus , Proteínas Virais , Oryza/virologia , Oryza/imunologia , Oryza/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Tenuivirus/fisiologia , Tenuivirus/patogenicidade , Vírus de Plantas/fisiologia , Fator de Ligação a CCAAT/metabolismo , Fator de Ligação a CCAAT/genética , Resistência à Doença/genética
6.
Proc Natl Acad Sci U S A ; 121(3): e2315341121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190519

RESUMO

Wing dimorphism of insect vectors is a determining factor for viral long-distance dispersal and large-area epidemics. Although plant viruses affect the wing plasticity of insect vectors, the potential underlying molecular mechanisms have seldom been investigated. Here, we found that a planthopper-vectored rice virus, rice stripe virus (RSV), specifically induces a long-winged morph in male insects. The analysis of field populations demonstrated that the long-winged ratios of male insects are closely associated with RSV infection regardless of viral titers. A planthopper-specific and testis-highly expressed gene, Encounter, was fortuitously found to play a key role in the RSV-induced long-winged morph. Encounter resembles malate dehydrogenase in the sequence, but it does not have corresponding enzymatic activity. Encounter is upregulated to affect male wing dimorphism at early larval stages. Encounter is closely connected with the insulin/insulin-like growth factor signaling pathway as a downstream factor of Akt, of which the transcriptional level is activated in response to RSV infection, resulting in the elevated expression of Encounter. In addition, an RSV-derived small interfering RNA directly targets Encounter to enhance its expression. Our study reveals an unreported mechanism underlying the direct regulation by a plant virus of wing dimorphism in its insect vectors, providing the potential way for interrupting viral dispersal.


Assuntos
Epidemias , Vírus de Plantas , Infecções por Vírus Respiratório Sincicial , Tenuivirus , Masculino , Animais , Vírus de Plantas/genética , Tenuivirus/genética , Insetos Vetores , Peptídeos Semelhantes à Insulina
7.
Viruses ; 15(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005916

RESUMO

Virus coat protein (CP)-mediated resistance is considered an effective antiviral defense strategy that has been used to develop robust resistance to viral infection. Rice stripe virus (RSV) causes significant losses in rice production in eastern Asia. We previously showed that the overexpression of RSV CP in Arabidopsis plants results in immunity to RSV infection, using the RSV-Arabidopsis pathosystem, and this CP-mediated viral resistance depends on the function of DCLs and is mostly involved in RNA silencing. However, the special role of DCLs in producing t-siRNAs in CP transgenic Arabidopsis plants is not fully understood. In this study, we show that RSV CP transgenic Arabidopsis plants with the dcl2 mutant background exhibited similar virus susceptibility to non-transgenic plants and were accompanied by the absence of transgene-derived small interfering RNAs (t-siRNAs) from the CP region. The dcl2 mutation eliminated the accumulation of CP-derived t-siRNAs, including those generated by other DCL enzymes. In contrast, we also developed RSV CP transgenic Arabidopsis plants with the dcl4 mutant background, and these CP transgenic plants showed immunity to virus infection and accumulated comparable amounts of CP-derived t-siRNAs to CP transgenic Arabidopsis plants with the wild-type background except for a significant increase in the abundance of 22 nt t-siRNA reads. Overall, our data indicate that DCL2 plays an essential, as opposed to redundant, role in CP-derived t-siRNA production and induces virus resistance in RSV CP transgenic Arabidopsis plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tenuivirus , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , Tenuivirus/genética
8.
Pestic Biochem Physiol ; 194: 105509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532362

RESUMO

As an important biogenic amine in invertebrates and corresponding to the neurotransmitter norepinephrine in vertebrates, octopamine (OA) regulates diverse physiological and behavioral processes by binding to specific octopamine receptors (OARs) in invertebrates. At present, OARs have been identified and characterized in several insects. However, less is known about the OARs of Laodelphax striatellus, one of the most destructive pests in East Asian rice fields. In the present study, an α1-adrenergic-like OAR (LsOA1) from L. striatellus was cloned. LsOA1 has the typical characteristics of G-protein coupled receptors and is clustered with other insect homologs. The transcript level of LsOA1 varied in various stages and tissues, and was highly expressed at the egg stage and in the brain. Silencing of LsOA1 causes a reduction in vitellogenin (LsVg) and vitellogenin receptor (LsVgR) expression. Although LsOA1 interference did not affect the fecundity and survival of L. striatellus, the hatching rate of L. striatellus was significantly reduced, and the hatching period was prolonged. The decrease in the amount of honeydew excreted after silencing LsOA1 indicates that LsOA1 may be involved in regulating the feeding behavior of L. striatellus. In addition, the interference of LsOA1 significantly reduced the expression of capsid protein (CP) and viral RNA3 segment (RNA3) in rice stripe virus (RSV)-viruliferous L. striatellus, but did not affect the vertical transmission rate of RSV. The present study demonstrated that LsOA1 played a crucial role in the physiological and behavioral processes of L. striatellus, which will provide the basis for developing a new target gene for pest control.


Assuntos
Hemípteros , Oryza , Receptores de Amina Biogênica , Tenuivirus , Animais , Adrenérgicos/metabolismo , Hemípteros/fisiologia , Insetos , Receptores de Amina Biogênica/genética , Tenuivirus/metabolismo
9.
Mol Plant Pathol ; 24(11): 1359-1369, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37404045

RESUMO

Our previous study identified an evolutionarily conserved C4HC3-type E3 ligase, named microtubule-associated E3 ligase (MEL), that regulates broad-spectrum plant resistance against viral, fungal and bacterial pathogens in multiple plant species by mediating serine hydroxymethyltransferase (SHMT1) degradation via the 26S proteasome pathway. In the present study, we found that NS3 protein encoded by rice stripe virus could competitively bind to the MEL substrate recognition site, thereby inhibiting MEL interacting with and ubiquitinating SHMT1. This, in turn, leads to the accumulation of SHMT1 and the repression of downstream plant defence responses, including reactive oxygen species accumulation, mitogen-activated protein kinase pathway activation, and the up-regulation of disease-related gene expression. Our findings shed light on the ongoing arms race between pathogens and demonstrate how a plant virus can counteract the plant defence response.


Assuntos
Oryza , Vírus de Plantas , Tenuivirus , Tenuivirus/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia
10.
Mol Biol Rep ; 50(9): 7263-7274, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422539

RESUMO

BACKGROUND: Rice stripe virus (RSV) caused a serious disease pandemic in rice in East China between 2001 and 2010. The continuous integrated managements reduced virus epidemic year by year until it was non-epidemic. As an RNA virus, its genetic variability after undergoing a long-term non-epidemic period was meaningful to study. While in 2019, the sudden occurrence of RSV in Jiangsu provided an opportunity for the study. METHODS AND RESULTS: The complete genome of JY2019, an RSV isolate from Jiangyan, was determined. A genotype profile of 22 isolates from China, Japan and Korea indicated that the isolates from Yunnan formed the subtype II, and other isolates clustered the subtype I. RNA 1-3 of JY2019 isolate well-clustered in the subtype I clade, and RNA 4 was also in subtype I, but it had a slight separation from other intra-group isolates. After phylogenetic analyses, it was considered NSvc4 gene contributed to the tendency, because it exhibited an obvious trend towards the subtype II (Yunnan) group. High sequence identity (100%) of NSvc4 between JY2019 and barnyardgrass isolate from different regions demonstrated genetic variation of NSvc4 was consistent in RSV natural populations in Jiangsu in the non-epidemic period. In the phylogenetic tree of all 74 NSvc4 genes, JY2019 belonged to a minor subtype Ib, suggesting the subtype Ib isolates might have existed in natural populations before the non-epidemic period, but not a dominant population. CONCLUSIONS: Our results suggested that NSvc4 gene was susceptible to selection pressure, and the subtype Ib might be more adaptable for the interaction between RSV and hosts in the non-epidemic ecological conditions.


Assuntos
Oryza , Tenuivirus , Tenuivirus/genética , Filogenia , Pandemias , China/epidemiologia , RNA , Oryza/genética
11.
J Vis Exp ; (194)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184270

RESUMO

Arthropods are known to transmit a variety of viruses of medical and agricultural importance through their hemolymph, which is essential for virus transmission. Hemolymph collection is the basic technology for studying virus-vector interactions. Here, we describe a novel and simple method for the quantitative collection of hemolymph from small arthropods using Laodelphax striatellus (the small brown planthopper, SBPH) as a research model, as this arthropod is the main vector of rice stripe virus (RSV). In this protocol, the process begins by gently pinching off one leg of the frozen arthropod with fine-tipped tweezers and pressing the hemolymph out of the wound. Then, a simple micropipette consisting of a capillary and a pipette bulb is used to collect the transudative hemolymph from the wound according to the principle of capillary forces. Finally, the collected hemolymph can be dissolved into a specific buffer for further study. This new method for collecting hemolymph from small arthropods is a useful and efficient tool for further research on arboviruses and vector-virus interactions.


Assuntos
Artrópodes , Hemípteros , Oryza , Tenuivirus , Animais , Hemolinfa , Doenças das Plantas
12.
J Virol Methods ; 319: 114757, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37257758

RESUMO

Geminiviruses are a family of single-stranded DNA viruses that cause significant yield losses in crop production worldwide. Transcription start site (TSS) mapping is crucial in understanding the gene expression mechanisms of geminiviruses. However, this often requires costly and laborious experiments. Rice stripe virus (RSV) has a mechanism called cap-snatching, whereby it cleaves cellular mRNAs and uses the 5' cleavage product, a capped-RNA leader (CRL), as primers for transcription. Our previous work demonstrated that RSV snatches CRLs from geminiviral mRNAs in co-infected plants, providing a convenient and powerful approach to map the TSSs of geminiviruses. However, co-infections are not always feasible for all geminiviruses. In this study, we evaluated the use of in vitro cap-snatching of RSV for the same purpose, using tomato yellow leaf curl virus (TYLCV) as an example. We incubated RNA extracted from TYLCV-infected plants with purified RSV ribonucleoproteins in a reaction mixture that supports in vitro cap-snatching of RSV. The RSV mRNAs produced in the reaction were deep sequenced. The CRLs snatched by RSV allowed us to locate 28 TSSs in TYLCV. These results provide support for using RSV's in vitro cap-snatching to map geminiviral TSSs.


Assuntos
Geminiviridae , Tenuivirus , Tenuivirus/genética , Tenuivirus/metabolismo , Geminiviridae/genética , RNA Viral/genética , Sítio de Iniciação de Transcrição , RNA Mensageiro/genética
13.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928081

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Assuntos
Tenuivirus , Viroses , Animais , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Tenuivirus/metabolismo , Insetos Vetores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
14.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835087

RESUMO

MicroRNAs play key regulatory roles in plant development. The changed pattern of miRNA expression is involved in the production of viral symptoms. Here, we showed that a small RNA, Seq119, a putative novel microRNA, is associated with the low seed setting rate, a viral symptom of rice stripe virus (RSV)-infected rice. The expression of Seq 119 was downregulated in RSV-infected rice. The overexpression of Seq119 in transgenic rice plants did not cause any obvious phenotypic changes in plant development. When the expression of Seq119 was suppressed in rice plants either by expressing a mimic target or by CRISPR/Cas editing, seed setting rates were extremely low, similar to the effects of RSV infection. The putative targets of Seq119 were then predicted. The overexpression of the target of Seq119 in rice caused a low seed setting rate, similar to that in Seq119-suppressed or edited rice plants. Consistently, the expression of the target was upregulated in Seq119-suppressed and edited rice plants. These results suggest that downregulated Seq119 is associated with the low seed setting rate symptom of the RSV in rice.


Assuntos
MicroRNAs , Oryza , Tenuivirus , MicroRNAs/genética , Tenuivirus/genética , Oryza/genética , Doenças das Plantas/genética
15.
Plant Sci ; 326: 111504, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36272547

RESUMO

Ammonium (NH4+) is a major inorganic nitrogen source for plants and also as a signal regulates plant growth and defense. Brassinosteroids (BRs) are a class of steroid hormones that control plant developmental and physiological processes through its signaling pathway. Rice is a kind of NH4+-preferring plant which responds to virus infection involving in the regulation of BR biosynthesis and signaling. However, the BR-mediated regulatory mechanisms in rice-virus interactions are not fully understood. In addition, it remains unknown whether there is a direct link between NH4+ and BRs in regulating rice response to virus. HDA703, a histone deacetylase and OsBZR1, a transcription factor, are two positive regulator of BR signaling and interact with each other. In this study, we show that rice plants grown with NH4+ as the sole N source have enhanced resistance to rice stripe virus (RSV), one of the most devastating viruses of rice, than those grown with NO3- as the sole N source. We also show that in contrast to NO3-, NH4+ does not affect BR biosynthesis but promotes BR signaling by upregulating the expression of HDA703 and promoting the accumulation of OsBZR1 in rice shoots. We further show that BR biosynthesis and signaling is required for rice defense against RSV and BR-mediated resistance to RSV attributes to activating HDA703/OsBZR1 module, then decreasing the expression of Ghd7, a direct target of HDA703/OsBZR1. Consistently, increase of the expression of HDA703 or decrease of the expression of Ghd7 enhances rice resistance to RSV. Together, our study reveals that activation of HDA703/OsBZR1-Ghd7 signaling cascade is an undescribed mechanism conferring BR-mediated RSV resistance and NH4+ protects rice against RSV by activating HDA703/OsBZR1-Ghd7-mediated BR signaling in rice.


Assuntos
Compostos de Amônio , Oryza , Tenuivirus , Tenuivirus/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compostos de Amônio/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais
16.
Virus Res ; 324: 199019, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36496034

RESUMO

Rice stripe virus (RSV) causes enormous losses in rice production and is transmitted by the small brown planthopper, Laodelphax striatellus, in a persistent-propagative manner. RSV accumulation within the gut lumen of the vector is indispensable for the successful transmission to rice and insects. In this study, we obtained a 1464 bp full-length cDNA of a voltage-dependent anion channel 2 from L. striatellus (LsVDAC2), which encodes a 283 amino acid protein. RSV infection increased the expression of LsVDAC2 in the midguts and ovaries of L. striatellus by 260% and 228%, respectively. Silencing of LsVDAC2 resulted in a 88% reduction of RSV loads at 24 h after RNAi, indicating that LsVDAC2 facilitates RSV accumulation in the vector. Yeast two-hybrid and GST pulldown assays demonstrated that LsVDAC2 interacted with RSV RNA-dependent RNA polymerase, RdRp. Furthermore, experiments in vivo and in vitro showed that LsVDAC2 induced the apoptotic response in RSV-infected insects and tissues. Silencing of LsVDAC2 via RNAi significantly reduced the expression of genes for apoptosis-related caspases 1a and 1c by 62% and 78%, respectively, in RSV-infected vectors. Whether LsVDAC2-induced RSV accumulation is related to RSV RdRp and LsVDAC2-induced cell apoptosis deserves further investigation.


Assuntos
Hemípteros , Oryza , Tenuivirus , Animais , Tenuivirus/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Insetos Vetores , Insetos
17.
Arch Insect Biochem Physiol ; 112(2): e21992, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36575628

RESUMO

The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.


Assuntos
Hemípteros , Oryza , Tenuivirus , Animais , Tenuivirus/genética , Insetos Vetores/genética , Hemípteros/genética , Insetos/genética , Perfilação da Expressão Gênica , Proteínas Virais/metabolismo
18.
Viruses ; 16(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38257773

RESUMO

Rice stripe disease caused by the rice stripe virus (RSV), which infects many Poaceae species in nature, is one of the most devastating plant viruses in rice that causes enormous losses in production. Ailanthone is one of the typical C20 quassinoids synthesized by the secondary metabolism of Ailanthus altissima, which has been proven to be a biologically active natural product with promising prospects and great potential for use as a lead structure for pesticide development. Based on the achievement of the systemic infection and replication of RSV in Nicotiana benthamiana plants and rice protoplasts, the antiviral properties of Ailanthone were investigated by determining its effects on viral-coding RNA gene expression using reverse transcription polymerase chain reaction, and Western blot analysis. Ailanthone exhibited a dose-dependent inhibitory effect on RSV NSvc3 expression in the assay in both virus-infected tobacco plants and rice protoplasts. Further efforts revealed a potent inhibitory effect of Ailanthone on the expression of seven RSV protein-encoding genes, among which NS3, NSvc3, NS4, and NSvc4 are the most affected genes. These facts promoted an extended and greater depth of understanding of the antiviral nature of Ailanthone against plant viruses, in addition to the limited knowledge of its anti-tobacco mosaic virus properties. Moreover, the leaf disc method introduced and developed in the study for the detection of the antiviral activity of Ailanthone facilitates an available and convenient screening method for anti-RSV natural products or synthetic chemicals.


Assuntos
Ailanthus , Produtos Biológicos , Quassinas , Tenuivirus , Tenuivirus/genética , Nicotiana , Antivirais/farmacologia
19.
Arch Virol ; 168(1): 3, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539651

RESUMO

During the 2019 winter wheat season, symptoms of severe chlorosis and stunting were observed on wheat in the irrigation production areas of South Africa. RNAtag-seq data were generated for seven samples from KwaZulu-Natal province and one from Limpopo. Analysis of assembled contigs indicated the presence of a putatively novel member of the genus Tenuivirus, tentatively named "wheat yellows virus" (WhYV). The genome is made up of four segments, which are 8952, 3451, 2338, and 2045 nucleotides in length and code for a total of seven ORFs. Phylogenies of each segment (nucleotide) and the polymerase gene (amino acid), as well as amino acid sequence comparisons of each gene product, showed that WhYV is most closely related to rice stripe virus.


Assuntos
Tenuivirus , Tenuivirus/genética , Filogenia , Triticum , África do Sul , Genoma Viral , Genômica , Nucleotídeos
20.
Viruses ; 14(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36423156

RESUMO

Rice stripe virus (RSV) is one of the most important viral pathogens of rice in East Asia. The origin and dispersal of RSV remain poorly understood, but an emerging hypothesis suggests that: (i) RSV originates from Yunnan, a southwest province of China; and (ii) some places of eastern China have acted as a center for the international dissemination of RSV. This hypothesis, however, has never been tested rigorously. Using a data set comprising more than 200 time-stamped coat protein gene sequences of RSV from Japan, China and South Korea, we reconstructed the phylogeographic history of RSV with Bayesian phylogeographic inference. Unexpectedly, the results did not support the abovementioned hypothesis. Instead, they suggested that RSV originates from Japan and Japan has been the major center for the dissemination of RSV in the past decades. Based on these data and the temporal dynamics of RSV reported recently by another group, we proposed a new hypothesis to explain the origin and dispersal of RSV. This new hypothesis may be valuable for further studies aiming to clarify the epidemiology of RSV. It may also be useful in designing management strategies against this devastating virus.


Assuntos
Oryza , Tenuivirus , Tenuivirus/genética , Japão/epidemiologia , Teorema de Bayes , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA